

# A Nitrido Salt Reagent of Titanium

Rick Thompson,<sup>†</sup> Chun-Hsing Chen,<sup>‡</sup> Maren Pink,<sup>‡</sup> Gang Wu,<sup>§</sup> and Daniel J. Mindiola<sup>\*,†</sup>

<sup>†</sup>Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States <sup>‡</sup>Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States

<sup>§</sup>Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada

**Supporting Information** 

**ABSTRACT:** Deprotonation of the parent titanium imido  ${}^{tB\,u}nacnac$ )  $Ti \equiv NH(Ntolyl_2)$   ${}^{tB\,u}nacnac^- =$   $[ArNC^tBu]_2CH$ ;  $Ar = 2,6-^{i}Pr_2C_6H_3$ ) with KCH\_2Ph forms a rare example of a molecular titanium nitride as a dimer,  ${}^{[K][(^{tBu}nacnac)Ti \equiv N(Ntolyl_2)]}_2$ . From the parent imido or nitride salt, the corresponding aluminylimido– etherate adduct,  ${}^{tBu}nacnac$ ) $Ti \equiv N[AlMe_2(OEt_2)]$ -  $(Ntolyl_2)$ , can be isolated and structurally characterized. The parent imido is also a source for the related borylimido,  ${}^{tBu}nacnac$ ) $Ti \equiv NBEt_2(Ntolyl_2)$ .

B ecause of the large difference in electronegativity and consequentially the polarization of the metal-nitrogen bond, titanium complexes possessing a terminal nitride ligand remain elusive.<sup>1</sup> To date, the only documented examples of mononuclear titanium nitrides are those reported by Lancaster and co-workers, in which the nitride functionality is protected by a borane group,<sup>2-4</sup> rendering them somewhat inert to further reactivity. We recently reported a rare example of a fourcoordinate parent titanium imido complex, (<sup>Me</sup>nacnac)Ti≡  $NH(Ntolyl_2)$  (<sup>Me</sup>nacnac<sup>-</sup> = [ArNCMe]<sub>2</sub>CH; Ar =  $2_{6}$ -iPr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>);<sup>5</sup> however, all attempts to deprotonate the imido ligand resulted instead in deprotonation of the  $\beta$ -methyl backbone of the  $\beta$ -diketiminate ligand. This transformation has precedent and is attributed to the ligand's propensity to tautomerize to the tethered bisanilide species. $^{6-9}$  For this reason, we focused our attention toward preparing an analogous parent titanium imido having the more sterically encumbering and robust tert-butyl-substituted ligand tBunacnac  $({}^{tBu}nacnac^{-} = [ArNC^{t}Bu]_{2}CH; Ar = 2,6{}^{-i}Pr_{2}C_{6}H_{3}).{}^{10,11}$  In this work, we showcase spectroscopic and structural evidence for the first molecular titanium nitride salt and its reactivity in the form of a terminal nitride. We also demonstrate that in addition to being a precursor to the nitride ligand, the parent imido is a convenient template for rare imido scaffolds.

The compound (<sup>tBu</sup>nacnac)TiCl(Ntolyl<sub>2</sub>) (1) was prepared in 74% yield via transmetalation of (<sup>tBu</sup>nacnac)TiCl<sub>2</sub><sup>12</sup> with LiNtolyl<sub>2</sub> (Scheme 1).<sup>13,14</sup> Complex 1 displays characteristic features of a d<sup>1</sup> species (Evans method:  $\mu_{eff} = 1.82\mu_B$ , 25 °C, C<sub>6</sub>D<sub>6</sub>), while the room-temperature X-band EPR spectrum shows features similar to those of the analogue (<sup>Me</sup>nacnac)-TiCl(Ntolyl<sub>2</sub>)<sup>5</sup> ( $g_{iso} = 1.96$ , W = 5 G, toluene). A solid-state structure also confirmed the formation of a mononuclear, fourcoordinate Ti(III) species (Figure 1). Likely as a result of the increased steric bulk of the <sup>tBu</sup>nacnac ligand, the Ntolyl<sub>2</sub> Scheme 1. Synthetic Protocol for the Parent Imido 2 and Nitride 3



titanium-nitrogen distance increased from 2.016(2) Å in the <sup>Me</sup>nacnac analogue to 2.071(1) Å in 1. Following a protocol similar to that for the parent imido  $(^{Me}$ nacnac)Ti $\equiv$ NH(Ntolyl<sub>2</sub>),<sup>5</sup> treatment of 1 with a slight excess of NaN<sub>3</sub> in THF resulted in a gradual color change from olive green to yellow-orange.<sup>14</sup> Workup of the reaction mixture and recrystallization of the yellow precipitate resulted in isolation of the terminal parent imido (tBunacnac)Ti=NH- $(Ntolyl_2)$  (2) in 45% yield (Scheme 1).<sup>14</sup> <sup>1</sup>H NMR spectroscopic data revealed a  $C_s$ -symmetric molecule with one <sup>t</sup>Bu environment, as well as two locked <sup>i</sup>Pr and tolyl groups on the N-aryl and Ntolyl2 moieties, respectively. A broad feature at 3.86 ppm in the <sup>1</sup>H NMR spectrum is consistent with the terminal NH resonance, and preparation of the isotopomer  $(^{tBu}nacnac)Ti\equiv^{15}NH(Ntolyl_2)$  ( $\hat{2}$ - $^{15}N$ ) using 98%-enriched Na<sup>15</sup>N<sub>3</sub> resolved nearly 50% of the broad feature into a doublet centered at 3.86 ppm with a  ${}^{1}J_{\rm NH}$  value of 64 Hz. An INEPT  ${}^{15}N{}^{1}H$  NMR spectrum of 2- ${}^{15}N$  evinced a sharp resonance at 421 ppm with an identical  ${}^{1}J_{\rm NH}$  value.<sup>14</sup> Lastly, the solid-state IR (Nujol) spectrum of **2** displayed a sharp stretch at 3397  $cm^{-1}$ , while 2-<sup>15</sup>N showed a red-shifted stretch at 3390 cm<sup>-1</sup>, in good agreement with the difference predicted by the harmonic oscillator model ( $\Delta = 8 \text{ cm}^{-1}$ ).<sup>14</sup> X-ray diffraction studies on yellow crystals of 2 further corroborated our assessment of this species as mononuclear and thus possessing a rare example of a terminal NH ligand (Figure 1).<sup>15</sup> In the solid-state structure of 2, the imido Ti-N distance [Ti1-N4 = 1.6917(15) Å] is

 Received:
 April 24, 2014

 Published:
 May 23, 2014

#### Journal of the American Chemical Society



Figure 1. Solid-state structures of complexes 1-3 displaying thermal ellipsoids at the 50% probability level. All hydrogens (with exception of the imido H in 2) and solvent molecules have been omitted for clarity. The isopropyl groups on 3 have also been omitted for clarity.

slightly longer than that in the related <sup>Me</sup>nacnac species [1.6885(14) Å]. Additionally, the N–H proton was located in the difference map and refined isotropically. Interestingly, oxidation of the Ti center in 1 to the d<sup>0</sup> species 2 resulted in substantial twisting of the anilide ligand to an up–down conformation that allows for optimal  $\pi$  donation by the Ntolyl<sub>2</sub> lone pair to the metal center. This was also corroborated by a 0.09 Å contraction of the Ti1–N3 distance in 2 compared with 1.

To assess whether the solvent is the H-atom source in the formation of **2**, the synthesis of the isotopomer (<sup>tBu</sup>nacnac)-Ti $\equiv$ ND(Ntolyl<sub>2</sub>) (**2**-*d*<sub>1</sub>) in THF-*d*<sub>8</sub> was attempted. The IR spectrum of the resulting product revealed no sign of an N–D stretching frequency. Disappointingly, traditional H-atom sources such as 1,4-cyclohexadiene and 9,10-dihydroanthracene did not lead to improved yields of **2**, suggesting the source of this atom to be ligand-based (hence resulting in a yield of less than 50%). Therefore, we speculate at this time that the source of the H atom must derive from degradation of the <sup>tBu</sup>nacnac or Ntolyl<sub>2</sub> ancillaries.

Complex 2 reacts cleanly with benzylpotassium in toluene to afford a poorly soluble crystalline product along with toluene (detected by <sup>1</sup>H NMR spectroscopy). The <sup>1</sup>H NMR spectrum of this new material is characteristic of a similar  $C_s$ -symmetric species with the two aryl rings of the Ntolyl<sub>2</sub> group still locked in place, consistent with formation of a nitride having the formula " $[K][(^{tBu}nacnac)Ti(N)(Ntolyl_2)]$ ". The most salient change in the <sup>1</sup>H NMR spectrum is the disappearance of the broad parent imido (Ti=NH) resonance centered at 3.86 ppm. Likewise, the doublet <sup>1</sup>H NMR resonance for 2-<sup>15</sup>N was also absent after this species was treated with benzylpotassium.<sup>14</sup> Despite several attempts, no signal was observed in the solution-state <sup>15</sup>N NMR spectrum, which we attribute to the low solubility of the " $[K][(t^{Bu}nacnac)Ti \equiv N(Ntolyl_2)]$ " salt in most common nonprotic organic solvents in addition to the low NMR sensitivity of the <sup>15</sup>N nucleus (~0.1% as sensitive as <sup>1</sup>H). To circumvent this limitation, we acquired solid-state <sup>15</sup>N NMR spectra to further characterize the Ti-N bonding in this insoluble product.<sup>14</sup> Gratifyingly, the <sup>15</sup>N NMR signal for the <sup>15</sup>N-enriched nitrido ligand in "[K][(t<sup>Bu</sup>nacnac)Ti≡<sup>15</sup>N-(Ntolyl<sub>2</sub>)]" is highly deshielded [ $\delta_{iso} = 898(2)$  ppm] and also exhibits an exceedingly large chemical shift anisotropy spanning a range of over 1000 ppm [ $\delta_{11} = 1353(50), \delta_{22} = 1143(50), \delta_{33}$ = 198(50) ppm; Figure 2]. The highly deshielded resonance, albeit in the solid-state, is comparable to those of neutral vanadium nitrides having similar scaffolds, namely,  $[(^{Me}nacnac)V \equiv N(X)] [X = N(mesityl)(tolyl), Ntolyl_2, and$ 



Figure 2. Solid-state  $^{15}$ N NMR spectrum of 3 (black) and simulated spectra of 3 (red) and 2 (blue) overlaid.

OAr].<sup>13,17</sup> The observed <sup>15</sup>N chemical shift tensor parameters are characteristic of a terminal metal-ligand triple bond, as previously noted in terminally bound molybdenum nitride, phosphide, and carbide compounds.<sup>16</sup> For example, the <sup>15</sup>N chemical shift tensor for  ${}^{15}N \equiv Mo(N[{}^{t}Bu]Ar')_{3}$  (Ar' = 3,5-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) is  $\delta_{iso} = 833$  ppm,  $\delta_{11} = \delta_{22} = 1229$  ppm, and  $\delta_{33} = 42$  ppm. Interestingly, the <sup>15</sup>N chemical shift tensor in "[K][(t<sup>Bu</sup>nacnac)Ti $\equiv$ N(Ntolyl<sub>2</sub>)]" deviates considerably from axial symmetry  $[\kappa = 3(\delta_{22} - \delta_{iso})/(\delta_{11} - \delta_{33}) = 0.64]$ , and this feature can be attributed to the fact that the Ti center in "[K][( $^{tBu}$ nacnac)Ti $\equiv$ N(Ntolyl<sub>2</sub>)]" does not possess a C<sub>3</sub>symmetric environment, inasmuch as the nitrido atom is further involved in interactions with K<sup>+</sup> cations. This latter structural feature in "[K][( $^{tBu}$ nacnac)Ti $\equiv$ N(Ntolyl<sub>2</sub>)]" is also similar to that observed in the isovalent Mo-carbido having two bridging K<sup>+</sup>, {[K][ $(^{13}C \equiv MoN[^{t}Bu]Ar)_{3}$ ]}<sub>2</sub>, for which the <sup>13</sup>C chemical shift tensor is also nonaxially symmetric ( $\kappa$  = 0.88).<sup>16c</sup> For completeness, the <sup>15</sup>N chemical shift tensor for <sup>15</sup>N-enriched 2 (2-<sup>15</sup>N) was also determined:  $\delta_{iso} = 416(2)$ ppm,  $\delta_{11} = \delta_{22} = 656(50)$ ,  $\delta_{33} = -64(50)$  ppm. Once again, the general features of this <sup>15</sup>N chemical shift tensor for the  $Ti \equiv {}^{15}NH$  moiety in 2- ${}^{15}N$  are analogous to those of the  ${}^{13}C$ chemical shift tensor reported for  $H^{\bar{1}3}C \equiv Mo(N[^tBu]Ar)_{3}^{16c}$ in accord with a triple-bonded ligand.

To conclusively establish the connectivity of this salt-like material and to ascertain the degree of aggregation in " $[K][(^{tBu}nacnac)Ti\equiv N(Ntolyl_2)]$ " we collected X-ray diffraction data on a single crystal grown rapidly from Et<sub>2</sub>O at -37 °C. Scheme 1 and Figure 1 portray two titanium nitride fragments,  $[(^{tBu}nacnac)Ti\equiv N(Ntolyl_2)]^-$ , bridged by two K<sup>+</sup> ions, labeled as compound  $\{[K][(^{tBu}nacnac)Ti\equiv N(Ntolyl_2)]\}_2$ 

(3). The most notable feature is the short titanium–nitride distance of 1.660(4) Å, which is slightly shorter than that in the  $B(C_6F_5)_3$ -protected titanium nitrides reported by Lancaster and co-workers (1.671 Å).<sup>2-4</sup> The  $K_2N_2$  core forms a perfect diamond shape (sum of the four angles =  $360^\circ$ ) while the K<sup>+</sup> interacts with the  $\pi$  components (mostly the ipso and ortho positions) of the aryl moieties of the  $\beta$ -diketiminate ligand.

Interestingly, the use of NaHBEt<sub>3</sub> as an alternative base with 2 resulted in neither 3 nor a hypothetical borane-capped nitride salt "[Na][(<sup>tBu</sup>nacnac)Ti=NBEt<sub>3</sub>(Ntolyl<sub>2</sub>)]" but rather showed conversion to the borylimido complex (<sup>tBu</sup>nacnac)-Ti=NBEt<sub>2</sub>(Ntolyl<sub>2</sub>) (4) in addition to H<sub>2</sub> (Scheme 2). The





use of 2 equiv of NaHBEt3 was required in order to drive the reaction to completion as well as the formation of precipitates. <sup>1</sup>H NMR spectroscopy of the crude mixture showed no evidence of salt biproducts such as NaEt, but this is not surprising given its poor solubility in nonpolar solvents.<sup>18</sup> Furthermore, ethane or ethylene were not detected by <sup>1</sup>H NMR spectroscopy, suggesting that an ethyl radical pathway is not likely. However, the <sup>11</sup>B NMR spectrum of the crude mixture was more informative, displaying a resonance at -13ppm which we tentatively assign as NaBEt4;<sup>19</sup> the relative instability of this anion is also shown by the presence of a second <sup>11</sup>B resonance at 86 ppm, which corresponds to BEt<sub>3</sub>.<sup>14</sup> The <sup>1</sup>H and <sup>13</sup>C NMR spectra of 4 reveal an overall geometry akin to that of parent imido 2. Notably, the solid-state structure of 4 (Figure 3) depicts a tetrahedral titanium complex having a terminal linear borylimido [Ti=N, 1.722(3) Å; N=B, 1.428(6) Å; Ti-N-B, 168.1(3)°], in accord with a delocalized  $\pi$  Ti=N=B topology. Early transition metal borylimidos are extremely rare,<sup>20</sup> and complex 4 represents the first example involving a group 4 transition metal. The formation of 4 is also intriguing because the B-N bond results from the breaking of a very strong B–C bond (bond dissociation energy = 107.1 kcal/ mol). We found that direct addition of BEt<sub>3</sub> to 3 did not afford 4, suggesting that 4 does not result from thermal decomposition of a putative [Na][(<sup>tBu</sup>nacnac)Ti=NBEt<sub>3</sub>(Ntolyl<sub>2</sub>)] species. This result also argues that the second equivalent of NaHBEt<sub>3</sub> is indispensable in the formation of 4.

Intrigued by the ability of 2 to function as a nitride synthon, we reacted this species with  $AlMe_3$  to readily eliminate methane gas (observed by <sup>1</sup>H NMR spectroscopy), forming a dark-



**Figure 3.** Solid-state structures of complexes **4** and **5** depicting thermal ellipsoids at the 50% probability level. All hydrogen atoms have been omitted for clarity.

orange precipitate that is poorly soluble in arenes. Slow evaporation of a concentrated Et<sub>2</sub>O solution of this complex led to the formation of yellow-green dichroic crystals of the aluminylimido-etherate adduct (<sup>tBu</sup>nacnac)Ti=N-[AlMe<sub>2</sub>(OEt<sub>2</sub>)](Ntolyl<sub>2</sub>) (5) (Scheme 2). Compound 5 is also C<sub>s</sub>-symmetric in solution as gauged by <sup>1</sup>H NMR spectroscopy, which revealed a single methyl resonance at -0.925 ppm as well as broad Et<sub>2</sub>O resonances at 0.594 and 3.05 ppm. The <sup>27</sup>Al NMR spectrum of 5 exhibits a very broad signal located at ~191 pm, confirming the Al to be four-coordinate in solution.<sup>14</sup>

The solid-state structure of 5 (Figure 3) divulges a linear Ti-N–Al moiety  $[166.34(14)^{\circ}]$  containing a short Ti–N bond [1.6922(19) Å], again indicative of multiple-bond character, while the Al–N distance [1.834(2) Å] is more in accord with a single bond as a result of coordination of a molecule of Et<sub>2</sub>O. Furthermore, the Al–Me bond lengths [1.961(4) and 1.969(3) Å] are not significantly elongated relative to an average Al–Me bond, also signifying little hyperconjugation with the imido  $\pi$ system. The geometry around the aluminum can be considered as distorted tetrahedral, with the most acute angle being the N4-Al1-O1 angle [98.48(10)] because of the longer Al-O dative bond [1.960(2) Å]. To the best of our knowledge, complex 5 constitutes the first example of a transition metal having a terminally bound aluminylimido ligand. Recognizing that the nitride salt could undergo salt elimination reactions to afford the same product, we added a dilute solution of AlMe<sub>2</sub>Cl in hexanes to a benzene solution of 3, which resulted in the formation of the same poorly soluble orange product, presumably "(tBunacnac)Ti=N[AlMe2](Ntolyl2)", which upon exposure to Et<sub>2</sub>O yielded 5, as gauged by <sup>1</sup>H NMR spectroscopy.

While compound **3** is partially soluble and stable in both  $Et_2O$  and DME for several hours, the presence of THF rapidly decomposes this nitride to a dark-orange compound of much lower symmetry based on <sup>1</sup>H NMR. Similarly, attempts to encapsulate the K<sup>+</sup> of **3** by forming the discrete salt [K(2,2,2-Cryptand)][(<sup>Bu</sup>nacnac)Ti $\equiv$ N(Ntolyl<sub>2</sub>)] (2,2,2-Cryptand = 1,10-diaza-4,7,13,16,21,24-hexaoxabicyclo[8,8,8]hexacosane) failed under various conditions, instead resulting in what we propose to be intramolecular cross-metathesis rearrangements involving the  $\beta$ -diketiminate scaffold and the nitride (among other products). We have observed similar metathesis transformations of nacnac with nitride, alkylidyne, and alkylidene ligands.<sup>13,17,21</sup>

## Journal of the American Chemical Society

In conclusion, we have shown that as a result of a modification of the nacnac ligand, deprotonation of a parent titanium imido leads to the formation of the first molecular titanium nitride salt and that this species serves as a source of a terminal nitride. Likewise, we confirmed that the parent imido 2 may be used as a complementary nitride synthon, taking advantage of the vulnerable N–H bond.

## ASSOCIATED CONTENT

## **Supporting Information**

Experimental procedures, spectral data, and crystallographic information (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

## AUTHOR INFORMATION

#### **Corresponding Author**

mindiola@sas.upenn.edu

#### Notes

The authors declare no competing financial interest.

#### ACKNOWLEDGMENTS

This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (DE-FG02-07ER15893). G.W. thanks the NSERC of Canada for financial support. We also thank Dr. Ba L. Tran and Keith Searles for insightful discussions.

#### REFERENCES

 (1) (a) Morello, L.; Yu, P.; Carmichael, C. D.; Patrick, B. O.; Fryzuk, M. D. J. Am. Chem. Soc. 2005, 127, 12796. (b) Abarca, A.; Gomez-Sal, P.; Martin, A.; Mena, M.; Poblet, J. M.; Yelamos, C. Inorg. Chem. 2000, 39, 642. (c) Duan, Z.; Verkade, J. G. Inorg. Chem. 1996, 35, 5325. (d) Roesky, H. W.; Bai, Y.; Noltemeyer, M. Angew. Chem., Int. Ed. 1989, 28, 754. (e) Bailey, B. C.; Fout, A. R.; Fan, H.; Tomaszewski, J.; Huffman, J. C.; Gary, J. B.; Johnson, M. J. A.; Mindiola, D. J. J. Am. Chem. Soc. 2007, 129, 2234.

(2) Fuller, A.-M.; Clegg, W.; Harrington, R. W.; Hughes, D. L.; Lancaster, S. J. Chem. Commun. 2008, 5776.

(3) Mountford, A. J.; Lancaster, S. J.; Coles, S. J. Acta Crystallogr. 2007, C63, m401.

(4) Fuller, A.-M.; Hughes, D. L.; Jones, G. A.; Lancaster, S. J. Dalton Trans. 2012, 41, 5599.

(5) Tran, B. L.; Washington, M.; Henckel, D. A.; Gao, X.; Pink, M.; Mindiola, D. J. Chem. Commun. **2012**, *48*, 1529.

(6) (a) Basuli, F.; Bailey, B. C.; Huffman, J. C.; Mindiola, D. J. Organometallics 2005, 24, 3321. (b) Adhikari, D.; Basuli, F.; Orlando, J.; Gao, X.; Huffman, J. C.; Pink, M.; Mindiola, D. J. Organometallics 2009, 28, 4115. (c) Basuli, F.; Huffman, J. C.; Mindiola, D. J. Inorg.

*Chem.* **2003**, *42*, 8003. (7) Ding, Y.; Hao, H.; Roesky, H. W.; Noltemeyer, M.; Schmidt, H.-

G. Organometallics **2001**, 20, 4806.

(8) Driess, M.; Yao, S.; Brym, M.; van Wullen, C. Angew. Chem., Int. Ed. 2006, 45, 4349.

(9) Bambirra, S.; Perazzolo, F.; Boot, S. J.; Sciarone, T. J. J.; Meetsma, A.; Hessen, B. Organometallics **2008**, *27*, 704.

(10) Budzelaar, P. H. M.; van Oort, A. B.; Orpen, A. G. Eur. J. Inorg. Chem. 1998, 1485.

(11) Adhkari, D.; Tran, B. L.; Zuno-Cruz, F. J.; Sanchez-Cabrera, G.; Mindiola, D. J. Inorg. Synth. 2010, 35, 8.

(12) Basuli, F.; Bailey, B. C.; Watson, L. A.; Tomaszewski, J.; Huffman, J. C.; Mindiola, D. J. Organometallics 2005, 24, 1886.

(13) Tran, B. L.; Pink, M.; Gao, X.; Park, H.; Mindiola, D. J. J. Am. Chem. Soc. **2010**, 132, 1458.

(14) See the Supporting Information.

(15) McKarns, P. J.; Yap, G. P. A.; Rheingold, A. L.; Winter, C. H. Inorg. Chem. **1996**, 35, 5968.

(16) (a) Sceats, E. L.; Figueroa, J. S.; Cummins, C. C.; Loening, N. M.; Van der Wel, P.; Griffin, R. G. *Polyhedron* **2004**, *23*, 2751. (b) Wu, G.; Rovnyak, D.; Johnson, M. J. A.; Zanetti, N. C.; Musaev, D. G.; Morokuma, K.; Schrock, R. R.; Griffin, R. G.; Cummins, C. C. J. Am. Chem. Soc. **1996**, *118*, 10654. (c) Greco, J. B.; Peters, J. C.; Baker, T. A.; Davis, W. M.; Cummins, C. C.; Wu, G. J. Am. Chem. Soc. **2001**, *123*, 5003.

(17) (a) Tran, B. L.; Krzystek, J.; Ozarowski, A.; Chen, C.; Pink, M.; Karty, J.; Telser, J.; Meyer, K.; Mindiola, D. J. *Eur. J. Inorg. Chem.* **2013**, 3916. (b) Tran, B. L.; Pinter, B.; Nichols, A. J.; Chen, C.-H.; Krzystek, J.; Ozarowski, A.; Telser, J.; Baik, M.-H.; Meyer, K.; Mindiola, D. J. *J. Am. Chem. Soc.* **2012**, *134*, 13035.

(18) Whitmore, F. C.; Zook, H. D. J. Am. Chem. Soc. 1942, 64, 1783.
(19) Nöth, H.; Vahrenkamp, H. Chem. Ber. 1966, 99, 1049.

(20) (a) Danopoulos, A. A.; Redshaw, C.; Vaniche, A.; Wilkinson, G.; Hussain-Bates, B.; Hursthouse, M. D. Polyhedron 1993, 12, 1061.
(b) Fryzuk, M. D.; MacKay, B. A.; Johnson, S. A.; Patrick, B. O. Angew. Chem., Int. Ed. 2002, 41, 3709. (c) Weber, K.; Korn, K.; Schorm, A.; Kipke, J.; Lemke, M.; Khvorost, A.; Harms, K.; Sundermeyer, J. Z. Anorg. Allg. Chem. 2003, 629, 744.

(21) Basuli, F.; Bailey, B. C.; Tomaszewski, J.; Huffman, J. C.; Mindiola, D. J. J. Am. Chem. Soc. 2003, 125, 6052.